AD-786 723

LCFsmall: AN IMPLEMENTATION OF LCF

LLuigia Aicllo. ct al

Stanford University

Prepared for:

Office of the Secrctary of Defense
Advanced Rescarch Projeccts Agency

August 1974

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




UNCLASSIFIED

SECURITY CLASSIFICATION OF T'ils PAGE (Wnhen Data Entered)

kA - <
REPORT DOCUMENTATION PAGE e 4
[T REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
STAN-CS-Th-446 M 743
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED
LCFsmall: AN IMPLEMENTATION OF LCF technical, Aug. 1974

6. PERFORMING ORG. REPORT NUMBER

STAN-CS-T4=446 and AIM 24l

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
L. Aiello and R. W. Weyhrauch DAHC 15-73-C=-0L435
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
Stanford University
Computer Science Department ARPA 2495
Stanford, California 94305
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
ARPA/IPT, Attn: Stephen D. Crocker, Aug. 197k
1400 Wilson Blvd., Arlington, Va. 22209 . | '? w™UMARFR OF PAGES

50

T4, MONITORING AGENCY NAME & ADORESS(if dilferent from Controlling Office) 1S. SECURITY CLASS. (of this report)

ONR Representetive, Philip Surra
Durand Aeronautics Bldg., Rm. 165
Stanford University

Stanford, California 94305
16. DISTR'BUTION STATEMENT (of this Report)

15a. DECLASSIFICATION/ DOWNGRADING
SCHEDULE

" Releasable without limitations on dissemination.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difierent irom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Reprodyced by

NATIONAL TECHNICAL

INFORMATION SERVICE

U S Denartment of Commaerce
Springfield VA 22151

ABSTRACT (Continue on reverse side If necessary and identify by block number)

This is a report on a computer program implementing a simplified version
of LCF. It is written (with minor exceptions) entirely in pure LISP and
has none of the user oriented features of the implementation described

by Milner, We attempt to represent directly in code the metamathematical.
notions necessary to describe LCF. We hope that the code is simple
enough and the metamathematics is clear enough so that properties of

this particular program (e.g. its correctness) can eventually be

DD , 5%'ys 1473  EoiTioN OF 1 NOV 6515 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)



ARTIFICIAL INTELLIGENCE LABORATORY AUGUST 1974
MEMO AIM No.241

COMPUTER SCIENCE DEPARTEMENT REPORT !
STAN CS 74-446

LCFsmall: an implementation of LCF

by
| Luigia Aiello
and
Richard W. Weyhrauch

Abstract:

This is a report on a computer program implement.ag a simplified version of LCF,
It is written (with minor exceptions) entirely in pure LISP and has none of the user
oriented features of the implementation described by Milner. We attempt to represent
directly in code the metamathematical notions necessary to describe LCF. We hope
that the code s simple enongh and the inetamathematics is clear enough so that
properties of this particular program (e.g. its correctness) can eventually be proved.
The program is reproduced in full.

Authors’ addresses
l.. Aiello, tstituto di Flabarazione dell'infarmazione, via S. Mana 46, 56100 Pisa, ltaly;
R. Weyhrauch, A.L Lab. Compuier Scienee Depi., S1anford University, Stanford, California 94305.

This rescarch 1s supporied (in par1) by the Advanced Research Project Agency of the Office of the Secretary
| of Defense (DAHC 15-72-C.-0435).

) The views and conclusions contained in 1his documen) are 1hose of the authors and should not be interpreted
as neecssarily representing the official policies, either expressed or implied, of the Advanced Research

Project Agency, or the U.S. Government.

Reproduced .n USA. Available from the National Technical Information Service, Springfield, YVirginia 22151,

DDC
20
D'F T J.“,.,”El_ﬂ
ﬁ,j 0rT 10 1974 l |
I

.

[ DISTRIBUTION STATEMINT A

P |
ELEIU KL

Approved for public release; D
Distribution Unlimited




t9

LCFsmall

TABLE OF CONTENTS

Intraduction

Description of 1L.CFsmall

2.1 Inference commands

2.2 Auxihary commands

2.3 Messages from LCFsmall

2.4 How to use L.CFsmall

2.5 Kxamples of proofs

Deseriptien of the program

3.1 The Parser
3.1.1 Scanming primitives
3.1.2 The wif parser

3.2 Toap level driver

3.3 Printing routines

3.4 Commands

3.5 Auxidry functions
3.5.1 Predicates on free and hound accurrences of variables
3.5.2 Functions used 1n INCIL, CUT, CASES, SHOW
3.5.3 Coanversion and substitution routines

3.6 The Data Structure

References

Appendix 1 THE PARSER

1.1 Special variables
1.2 Scanner for LCFsmall

1.3 Parsing primitives

12
12
12
13
14
14
14
15
15
15
15
16
18
19
19
19

20




1.4
Appendix
Appendix
Appendin
Appendiy
Appendix

6.1

6.2

6.3
Appendix

1.1

1.2

13

1.4

Index

LCFsmall
Parser
2 TOP LEVEL ROUTINES
3 PRINTING ROUTINES

4 INFERENCE COMMANDS
5 AUXILIARY COMMANDS

6 AUXILIARY FUNCTIONS

Predicates on Free and Bound Occurrences of Varibles on Terms, Awfls, etc.

Miscellancous Functions Used in INCL, CUT, CASES, SHOW
Conversion and Substitution Routines

7 MANIPULATION OF THE DATA STRUCTURE
Constructors

Selectors

Predicates

Miscellancaus Functions

25
27

34

35
36
kY]
39
39
39
40
40

42




LCFsmall ]

SECTION 1 Introduction

LCFsmall 1s a case study. It was designed to shed light on several aspects of current research ' che
mathematical theory of computation and representation theory. As a side benefit it is a r Jeam
which can be used to do experiments using the typed A-calculus to interpret programming ' .ages.
This approach was first discussed by D. Scott in 1969, For us it was also an exercise 1n wr.. « such
a system without the aid of the MLISP2 extendible parser (Smith and Enea 1973).

LCFsmall is an implementation of a proof-checker for the unadorned logical calculus. LCF itself
augments this basic logic with additional rules and user aids in an attempt to make the actual
checking of proofs more feasible. These include the simplification rule, a facility for using theorems,
and the subgoal structure. LCFsmall has an entirely different motivation. First, a natural question
about LCF has zlways been “but who checks the checker?”, 1e. have you proved that LCF s correct?
This task 1s simply too big to be considered given our present capabilities for proving the
correctness of programs LCF uses backtracking and 1s about 35 pages of MLISP2 code. With no
extra free storage, it 1s a 48K (PDP10 36 bit word) program. We think that is the long run the
reliability (or correctness if you wish) of such large programs needs to be considered.

Several things happened to make us look at this task at different levels. First we had learned a lot
about constructing proof checkers while experimenting with LCF and a new cleaned up version was
envisioned. Secondly, M. Newey 1974 has presented an LCF axiomatization of LISP, and done
several extremely large proofs. This led us to consider the idea of writing a new version of LCF
enurely in LISP, which had some hope of being proved correct. Moreover, using pure LISP
increases 1ts portability. In actual fact it 1s written and printed here in MLISP2. T he translation
into pure LISP, however, is straight forward and we felt this was easier to read. A copy of the LISP
code can be gotten by writing to Richard Weyhrauch.

In c.der that a proof of correctness be at all feasible we decided only to include those rules originally
suggested by D. Scott in 1969. These are explained in detail in Milner 1972 and Weyhrauch and
Milner 1972. For the purpose of this note we expect familiarity with one of these papers.

Another motivation was our interest 1n seeing just how straightforward 1t was to translate the
“metamathematical description” of LCF directly into code. That is we tried to write the program in
terms of the notions involved.

A tv)ical metamathematical description of a logical calculus involves some general inductive
definitions of sentences in the language, together with a description of the rules and an inductive
definition of derivations. These definitiens suggesc code directly. A reasonable question is: is this
“code” usable ana does it do the job, ie. I1s it correct? The problem of changing inductive
definitions (i.e. most frequently context free grammars of one sort or another) into parsers has been
discussed a lot. We do not go into 1t here. One result of this work, however, was the recognition for
a kind of control structure which we would have found very helpful. It is related to the notion of
updaters for data structures (see Hoare 1973).

Consider the following description of substitution of a term 1 for a variable v, in an expression e.
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subst(t,v,@) = IF isfreefor(t,v,e) THEN replace(tv,e) ELSE o

isfreefor(t,v,e) = IF atomic(e) THEN rrue
ELSE IF isquantwff(e)
THEN IF boundvarof(e)sv THEN frue
ELSE IF houndvarof(e)¢freevarof )aoccursfreein(v.e) THEN false
ELSE Vx¢PART(e)isfreefor(t,v,x)
ELSE Vx¢PART(e).isfreefor(,v,x)

occursfreein(v,e) 3 IF vze THEN frue
ELSE IF aromic(e) THEN false
ELSE IF isquantwffle)abounduvarof(e)sv THEN false
ELSE 3x€PARTS(e).occursfreein(v,x)

replacet,v,0) 5 IF vee THEN t
ELSE IF atomic(e) THEN e
ELSE REBUILD e USING replace(t,v,x) FOR x€PARTS(e)

This code is almost a direct translation of the first order description of the notions involved.
However, there appear constructs which are not generally available in existing programm:ag
languages and are not implementable simply or efficiently by a macro facility.

Consider for example the following four constructs:

Vx¢A B[x]
Ix¢A B[x]
PARTS (e)
REBUILD e USING F(xj FOR x€PARTS(e)

Each of them represents a kind of mapping function on different data structures.
Vx€A B[x]

is interpreted as: If A is a "set” then for each element of A, bind it to x and evaluate B. When you
are finished return the value of the conjunction of the results. In MLISP2 this function can be
realized by

FOR NEW X IN A DO :AND B[X]
but we do not use this construct in the code below as its translation into LISP is not imr ediate.
Ix¢€A.B(x]

is the same as ahave replacing disjunction for con junction.

The other two constructs are more difficult as they require a new look at the definition of data
structures. For PARTS(e), the program must be able to d-zide what kind of thing e is, and how to
canonically take it apart. In our example REBUILD retur.is the homomorphic image of e with respect
to replace and the basic constructors of e. This type of updating uata structures is considered in
Hoare 1973
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The above examples show that the direct translation of metamathematics nto code requires
programming language features not yet generally avatlable, and show that these features arise
naturally in applications. These examples of course do not use assignment statements to “remember"”
certain facts and possibly are computed several times, making this code inefficient. We do no!
believe, however, that it 15 too bad. This kind of redundant computation can be detected by a
compuler.

The code below is a compromise using only those features available in pure LISP, rather than
defining these constructs in LISP and then writing code 1z terms of them.

In all cases the code has been written abstract syntactically and the actual data structures are not
mentioned. The ones we have chasen are found in appendix 7.
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SECTION 2 Description of LCFsnall

In this section we describe LCFsmall and compare 1t with LCF as described in Milner 1972 1In
LCFsmall no restriction has been imposed on the logic, all the inference rules described in Milner
1972, section 2 are included mn 1t On the contrary, iestrictions have been imposed on the
commands. LCFsmall has none of the facihities included in LCF to help the user in making proofs.
It has no subgoaling rechanism, no simplifications facihities, no possibility of declaring axioms and
using theorems. Steps of the proofs cannot be labeled, so the only way of referencing them is by
their stepnumber. Proofs can only be carried out by a forward deduction without any abbreviation.
In addition, restrictions have been imposed on the syntax of terms. In LCFsmall parentheses can
never be omitted.

LCF has no CASES and INDUCT commands, because the corresponding subgoaling tactics are
more useful in making proofs. We have included these commands in LCFsmali since it has no
subgoaling mechanism. Moreaver, LCFsmall has a ALPHACONYV command absent in LCF. It is
used for changing names to bound variables. This command is not included in LCF, since it
automatically renames conflicting variables.

Section 2.1 Tufereice cominands

In the description of commands, as well as in the codc ci>ented in the appendices, the following
metavariables will be used:

L, L1, L2.. denote stepnumbers,

N, N1, N2.. denote nonnegative integers,

v, Vi, v2.. denote identifiers,

TRM, TRMI ... denote terms.

AWF, AWF | ... denote atomic well formed formulas {awff),

WF, WF1... denote well formed formulas (wff),
To facilitate the comparison with LCF, commands are listed in the same order as in Milner 1972. As
a general remark, note that commas are never used as delimiters in LCFsmall, blanks are used
instead.
Without worrying about the data “tructure (it will be described in 3.6) we note that a LCF proof is a
seguence of steps. Each of them 1s generated by one of the following commands and it consists of a
stepnumber, a wff (possibly consisting of only ore awff), the hst of stepnumbers it depends upon,
and the reason, 1.e. the command by which it has be=n obtained.

ASSUME AWF,

generates a new step in the proof. The AWF is added to the proof as a new step depending
on itself.
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INCL LI N;

generates a new step whose awff 1s the N-th awff in the step L1, and whose dependencies are
the same as L1I.

CONJ LI L2

the wffs in L1 and L2 are unioned and put in a new step whose dependencies are the union
of those of L1 and L2.

CUT LI L

if LI and L2 are steps in the proof and if each awff appearing in the dependencies of L2
appear 1n L1, then a new step 1s generated. Its dependencies are those of L1 and its wff is
that of L2,

HALF LI,

If the first awff in L1 contains the "z" symbol, then a new step is generated. Its awff is
obtained from the first awff of L1 replacing "=" by "e". The dependencies of the new step

are those of LI.
SYM LI;

This command is similar to the previous one. In this case the two terms of the first awff in
L1 are interchanged.

TRANS LI L2;

If the first awff in LI is of the form TRMIzTRM2 and the first awff in L2 has the form
TRM2=TRM3, a new step is generated. Its awff 1s TRMI=TRM3 and its dependencies are the
union of those of LI and L2. If in one (or both) cf the above awffs the symbol "<" appears,

then "e” will appear in the new step.
APPL L1 TRM,
APPL TRM LI,
In the first case, both sides of the first awff of L1 are applied to TRM. In the second case TRM
:-slapplied to both sides of the first awff of L. The dependencies of the new step are those of
ABSTR L1V,

If V 1s an identifier not occurring free in the dependencies of L1, then a A-abstraction is done
on both terms of the first awff of L1. The dependencies of the new step are those of L!.

CASES L1 L2 L3 TRM,
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Given 2 stepnumbers L1, L2 and L3 with the same wff, if one of the dependencies of L1 1s
TRM:=TT, one of the dependencies of L2 1s TRM:=UU and one of the dependencies of L3 1s
TRM=FF, then a new step 15 genierated. Its wff 15 that of L1 and 1ts dependencies are those of
L1, L2 and L3 after having removed the three above dependencies regarding TRM.

INDUCT LI L2 L3 L4 V],

Given four stepnumbers L1, L2, L3 and L4, if the first awff of L1 1s a fixpoint definition, 1. e.
if 1t has the form FIXz[ccG.FUN(G)], tf the wff of L2 1s obtained replacing UU for V1 in the wff
of L3, if the wff of L4 1s obtained replacing FUN(V1) for VI in the wff of L3, and moreover,
L3 appears in the dependencies of L4, then a new step 1s generated. Its wff 15 obtained
replacing FiX for V1 in the wff of L3. The command fails if one of the above conditions is
not met or if there is some variable conflict in one of the substitutions. The dependencies of
the new step are the union of those of L1, L2, L3 and L4, minus L3.

CONYV LI,

CONY TRM,

The conversior cominand has two forms: 1n the first one it takes a stepnumber L1 as
argument. In this case, both terms of the first awff of LI are converted and the resulting awff
becomes a nev’ step 1n the proof. Its dependencies are those of L1. If the argument of CONV
15 a term TRM a new step without dependencies 1s yenerated. Its awff 15 TRM:CONV T(TRM).
CONVT s a function which converts terms. lts defmition 1s given in appendix 6.3,
LCFsmall has no automatic mechamsm for changing the names of conflicting bound
variables. If there is some variable conflict, A-conversions aren't performed. So the term
[Ay [Axy ()])(x) 15 no” converted in LCFsmall, while it 1s converted to [Axi.x(x1}}in LCF.

ETACONV TRM;

TRM is etaconverted. Suppose TRM has the form [AxF(x)] with x not free in F, then a new step
i1s generated, without dependencies, whose awff is [AxF(x)]<F.

ALPHACONYV LI V] V2

ALPHACONY TRM VI V2;

If the first argument of ALPHACONY 1s a stepnumber L1, then VI replaces V2 in its first
bound occurrence 1n the first awff of L1. The resulting awff is put in a new step whose
dependencies are those of L1. If the first argument is a term, then a new step is generated,
without dependencies. Its awff 1s TRM:TRM1, where TRMI is obtained from TRM by replacing
V1 for V2 n ats first bound occurrence

EQUIV LI L2,

Given two step numbers L1 and L2 1if the first awff of L1 has the form TRMIcTRM2 and the
first awff of L2 nas the form TRM2cTRMI, then a new step is generated. Itz awff is
TRMI*TRM2 and its dependencies are the union of those of L1 and L2.




. B

LCFsmall 7

REFL! TRM

REFL2 TRM,

The first command generates a new step whose awff 1s TRM=TRM, without any dependency.
The awff generated by the second command is TRMcTRM.

MINIt TRM,

MIN2 TRM

In the first case a new step 1s generated, without dependencies, whose awff is UUCTRM. In the
second case the awff 1s UU(TRM)*UU.

CONDT TRM;

If TRM has the form TT-TRM1,TRM2 then CONDT generates a new step whose awff 1s
TRM:=TRM1 with no dependency.

CONDF TRM;

If TRM has the form FF-TRMI,TRM2 then CONDF generates a new step whose awff is
TRM=TRM2 with no dependency.

CONDU TRM;

If TRM has the form UU-TRMI1,TRM2 then CONDU generates a new step whose awff is
TRM=UU with no dependency.

FIXP LI;

If the first awff in L1 is a fixpoint definition, i.e. 1f it 1s of the form FIXz[«G.FUN(G)], and if
FIX may be substituted for G in FUN(G) without variable conflicts, then a new step s
generated. Its awff is FIX=FUN(FIX) and its dependencies are those of L1.

SUBST L1 OCC NIN L2;

SUBST L1 OCC N IN TRM;

SUBST has two forms. In the first one, 1if the first awff of LI is TRMI=TRM2, then TRM2 is
replaced for the N-th free occurrence of TRMI 1n the firt awff of L2. The resulting awff is put
in a new step, whose dependencies are the union of those of LI and L2.

In the second form the command SUBST operates on a TRM. If the abuve hypotheses hold
for L1, a new step is generated. lts dependencies are those of L1 and its awff is
TRM=SUBST TT(TRMI,TRM2,TRMN). The function SUBSTTT, defined in appendix 6.3,
substitutes TRM2 for the N-th free occurrence of TRMI in TRM.
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Section 2.2 Auxiliary commands

Besides the commands for carrying out deductions, LCFsmall has the following commands:

SHOW LINE LI;

SHOW LINE LI: L2,

In the first case the step L1 is printed. In the second case all the steps between LI and L2 are
printed

FETCH FILEN AME;

ANl the LCFsmall commands contained in the file FILENAME are executed. Each command
is treated exactly as if typed at tne console. So the user may prepare all the commands on a
file and then generate a proof by fetching this file.

CANCEL;

CANCEL LI,

In the first case the last step in the proof is deleted. In the second case all the steps from the
Jast one to L1 (included) are deleted. If L1 1s less or equal to on#, the entire proof is cancelled!

Section 2.3 Messages from LCFsmall

The following list inclndes all the messages printed by LCFsmall:
SYNTAX ERROR; TRY AGAIN

This is printed whenevei a command 1s improperly typed.

NASTY COMMAND

This error message is printed by any command whenever it cannot be executed because some
condition 1sn't satisfied. For instance, if you are trying to FIXP a nonexisting step or a step whose
first awff is not a fixpoint definition you will get NASTY FIXP.

THE LAST LINE IN THE PROOF IS N
vyOU HAVE DEMOLISHED YOUR PROOF

One of the above sentences is the answer of the system after executing a cancel command.

You may also obtain something like

3946 ILL MEM REF FROM ATOM
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if you have messed up something with LISP! However this shoudn't hapnen.

Section 2.4 How to use LCFsmall

If you want to prove something use LCF: Anyway, if you really want to use LCFsmall type:

R LCFSML

you are at LISP level and you will get a star. If you type

(INIT)

you 'll get some stars and then you are ready to prov= To stoi* a proof type

8
You'll receiv: the message END OF PROOF. Now you are again at LISP level. Typing

(RESUME)

will make you to go on with the old proof. If you want to start a new proof, type

(INIT)

Your core image may be saved for later use by the command

1C
SAVE FILENAME

Section 2.5 Examples of proofs

Two sample LCFsmall proofs are given here. They concerns the CASE and INDUCT commands.
The corresponding LCF proofs are very different. In fact, they are done using the subgoaling

mechanism.

The first statement we have proved 1is the following property of conditional expressions:

(P(X)=(P(X)=C1,C2),(P(X)=C1,C2))=(P(X)=Cl C2)

All the commands have been typed in the file TSTCS. They are.

CONDT (TT=(P(X)=C1,C2),(P(X)=C1,C2));
CONDU (UU=(P(X)=CI C2),(P(X)}~C1,C2));
CONDU (UU=~C1,C2);

CONDF (FF=(P(X)=C1,C2),(P(X)=C1,C2));
SYM 3;

SUBST 5 OCC 2 IN 2;
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ASSUME P(X)=TT;
ASSUME P(X)=UU;
ASSUME P(X)=FF;
SYM 7,

SYM 8;

SYM 9;

SUBST 10 OCC 1
SuUBST 11 OCC 1
suUBsST 11 OCC 1

% SuUBST 12 OCC |

CASES 1315 16

P(X);

The file 15 then fetched and the proof is done. The printout of LCFsmall is

R LCFSML
(INIT)
FETCH TSTCS;
>

t — xxkkl  (TT=(P(X)=C!,€2),(P(X)=2C],C2)):(P(X)-C],C2)
xxkx2 (UU=(P(X)=C1,C2),(P(X)=C1,C2)):UU

4 *kx%3  (UU=CI1,C2):UU
xxxxd (FF=(P(X)=C1,C2),(P(X)~C1,C2))=(P(X)=C1,C2)
*xxx5  UU:(UU-CI C2)

| *xxxx6  (UU=(P(X)=C1,C2),(P(X)»C1,C2))=(UU~C],C2)
*xkx7  P(X)sTT (7)
*xxx%8 P(X):UU (8)

. *x%k%%k9 P(X):FF (9)

*kkx]0 TT:=P(X) (7)
xkkxl 1 UUzP(X) (8)
*xkxk]2 FFzP(X) (9)
xxx%]3 (P(X)=(P(X)=C1,C2),(P(X)=C1,C2))=(P(X)=C1,C2) 7)
xxkxl4 (P(X)=(P(X)=C1,C2),(P(X)»C1,C2))x(UU-CI,C2) (8)
*xxkxl5 (P(X)=(P(X)=C1,C2),(P(X)»C1,C2)):(P(X)=C1,C2) (8)
*xkk16 (P(X)=(P(X)=C1,C2),(P(X)=C1,C2)):(P(X)=C1,C2) 9)
*xxk17  (P(X)=(P(X)=C1,2),(P(X)=C1,C2))s(P(X)=C1,C2)
R KK

’ *okkkk§
END OF PROOF
NIL
*x1C

) 1c

The next example 1s taken from Milner 1972, section 3.1. The statement to be proved is:
| FG  ASSUME Fz[ocF FUN(F)], G=FUNG).
The commands, typed in the file TSTIND are:

ASSUME Fs[ecF FUN(F)};
ASSUME GzFUN(G);
ASSUME F1<G;

10
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MINI G;

APPL FUN 3; W
SYM 2; \\v«.‘
SUBST 6 OCC | IN 5;

INDUCT | 437 Fl;

The printout of LCFsmall is:

R LCFSML
(INIT)
FETCH TSTIND;

xxxk] Fz[ocF FUN(F)] (1)
xxxx2 GzFUN(G) (2)
xkkx2 FleG (3) ‘
xxxx4 UUcG b
*xxkE  FUN(F1)cFUN(G) {3)
*xx%x%6 FUN{G):G (2)
*xxx7 FUN(F!l)eG {2 3)
xxxx8 FecG (12)

Aok K :
KKKk '

END OF PROOF
NIL

*1C

iC

The length of the two above LCFsmall proofs is comparable with that of their corresponding LCF
proofs. However, as soon as the proof becrmes more complex and a considerable amount of
substitutions and conversions have to be dore, the subgoaling mechanism and -more important- the
simplification algorithm of LCF become vital.
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SECTION 3 Description of the program

The MLISP2 program for LCFsmall 1s completely histed in the appendices | through 7. In the
rollowing sections, the various components of the program are described. They are: t

1) parser

2) top level driver
2) printing routines
4) commands

5) auxiliary functions -
6) functions manipulating the data struciure !

Section 3.1 The Parser

t ’—/\t 3.1.1  Scanning primitives

. This code implements a backupable scanner. 1t uses an array, TSTACK, ‘o store “tokens” as they
b are scanned. Actually the scanner returns both a type and a value, where "value” is the atom
scanned and "type” 1s:

IDENT if the value 1s an identifier
NUMBER if the value ts a number
DEL if the value 15 a delimiter.

Two global variab'es are used to keep track of what token we are looking at in the input stream.
They are PC and ENDSTACK. PC points into TSTACK at the place the LCFsmall scanner is
looking. ENDSTACK 1s the last location in TSTACK that has been filled from the current input.
TSTACI 15 necessary because scan destroys the nput stream, and the LCFsmall parser, being top
down, needs to back up over the input. The main accessing routine for TSTACK is the function
tstack which calls scan if not enough tokens have been read.

scan():  returns a pair consisting of the token scanned and its type.
| setup(): sets PC=0 and ENDSTACK -0 and declares the array TSTACK.
token: simply advances the LCFsmall scanner.
tokenv(): advances the scanner and returns the value of the new thing pointed to.
tokent(): advances the scanner and :eturns the type of the new thirg pointed to.
tstack(n): finds the n-th element of TSTACK, if 1ts not there it calls scan until it is.

peekv(n): returns the n-th token ahead of PC.

peekt(n): returns the type of the n-th token ahead of PC.
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flush(): starts the LCFsmall scanner over by setting PC=0 and ENDSTACK=0.
nextv(x): returns T if the value of the next token 1s x, NIL otherwise.
nextt(x): returns T if the type of the next token 1s x, NIL otherwise.

The function scan was not written with efficiency in mind. It uses ordinary LISP functions whose
properties we know about. This 15 becauss we hope someday to prove the correctness of this
program. Note that the only functions not defina 'e in pure LISP are READLIST, ASCII, TYI,
and TSTACK. Arrays could easily be eiminated in f=vor of lists. The array TYPE stores the type
of a character, 0 for letters, | for digits, 2 for delimiters, 3 for characters to be ignored when
building tokens (like form feeds). The special global variables can be eliminated from the code in
favor of pure LISP in the standaid way

3.1.2 The wff parser

Rather than describing everything in detail we will explain the parser by explaining some examples.
Censider

EXPR TERM();
BEGIN NEW START,REPX,Y:START+PC;
IF X+SIMPLTERM() THEN REP«X ELSE RETURN NIL;
A;  START«PC;
IF LPAR()A(Y*~TERM,))ARPAR() THEN REP+('?!APPLY CONS REP CONS Y) ALSO GO A;
PC-START;
RETURN(REP);END;

The local variable START s to remember where the global variable PC was pointing when the
function was entered, ie. START=PC. The convention for a parsing function is that either it exits
successfully with a non NIL value and leaves PC pointing to the next token to be looked at or it
returns NIL and leaves the value of PC as 1t was when the function was entered. The code

IF X=SIMPLTERM() THEN REP+X ELSE RETURN NiL;

checks 1f a SIMPLTERM 1s scanned. In this case REP gets 1t as a value. If not (by our convention)
SIMPLTERM returns NIL, and PC 1s left as it was, so TERM returns NIL and PC remains unchanged.
If we have found a SIMPLTERM, TERM has succeeded and we enter a loop, update the place in the
mput stream we backup to when we exit TERM and look for repetitions of a left parenthesis (LPAR),
followed by e TERM, followed by a right parenthesis (RPAR).

A;  START-PC;
IF LPAROA(Y~TERM()ARPAR() THEN REP+("?IAPPLY CONS REP CONS Y) ALSO GO A;

After each successfu! repetition REP gets the internal representation of an application term, i.e.
F(x)=(APPLYI F x). When the loop test eventually fails we restore PC and return the term stored in

REP.

Section 3.2 Top level driver
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LCFsmall s started by the INIT function. This and the other top level functions are listed in
appendix 2. INIT sets the base for numbers to 10, imuiahizes the scanner and then initializes the
proof PROOF, the global variable which keeps record of the proof, 1s set to NIL and PFLENGTH,
the proof length, 1s set to 0. Then RESUME 1s called. It takes into account the fact that the input
commands may be read from the console or from a fetched file. It calls the function LCFPROOF
which builds up the proof by a rea. execute-write loop.

LCFPROOF makes a test on the content of the input buffer. If its first character is §, then an end
of proof message 1s typed and the proof 1s stopped. If a command is parsed and executed the loop
goes on. The function LINE controls the execution of LCF commands. After a command has been
successfully parsed and executed, if the value returned 1s a proof step, then it 1s added to the proof.

If none of the expected command 15 paised, the input buffer 1s scanned ty the function BADLINE
until the first semicolon is met. Then an error message 1s printed.

Section 3.3 Printing routines

The printing routines are hsted in appendix 3. They depend on the internal representation of terms,
awffs, wffs and proof steps, which 1s described in section 36.

PRINTAWFF 1s the printuing routine for terms and awffs. They are transformed from the internal
prefix form to a parenthetized form.

PRINTMES prints messages. 1t takes the string to be printed as argument. PRINTM is used to
print a message when some steps in the proof have been cancelled. The string to be written is fixed,
the argument of PRINTM 1s the proof-length after the cancellation.

PRINTNEWLINE prints the newly generated line, whenever a command 1s successfully executed.
The stepnumber, the wff and 1its dependencies are printed. PRINTLINE is like PRINTNEWLINE,
but it may print any step 1n the proof, not necestarily the last one. It prints also the reason of the
step.

PRINTLST 1s an auxiliary printing routine which prints a hst of awffs separated by blanks.

Section 3.4 Commands

The commands are shown n appendices 4 and 5. Tiey are listed in the same order as they are
describd 1n sections 2.1 and 2.2. Every command 1s realized by two functions. T he first one performs
a check on the syntax of the input sentence. If the expected command is successfully parsed then the
corresponding semantic function 15 called, otherwise the pointer is restarted in the input buffer. This
allows the input sentence to be tested again to see if we are faced with another command or if there
1s a syntax error in the input. Each semantic function performs a series of tests to see whether or not
the conditions for the applicability of the corresponding rule are met. In this case it returns a new
step to be added to the proof, otherwise it returns the message NASTY COMMAND.

We think that all the syntactic and semantic functions realizing the LCFsmall commands are
sufficiently clear, after having read the description of the commands given in sections 2.1 and 2.2.
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Section 3.5 Auxiliary functions

The auxihary functions and predicates used in defining the commands are hsted in appendices 6
and 7. Appendix 7 contains the predicates and functions directly deahng with the data structure,
they will be described in the next section. The functions and predicates listed 1n appendix 6 have
been divided into three groups and will be discussed in the three following subsections.

3.51 Predicates on free and bouund occurrences of variables

NOTBNDVT(V,TRM) 1s a predicate true if V has no bound occurrences in TRM. BOUNDYV s its !
negation.

NOTFRVT(V,TRM) 1s a predicate true if V has no free occurrences in TRM. FREEV 15 1ts negation.

NOTFREVW(V,WF) 1s true if V has no free occurrences 1n the wif WF. NOTFREE(V,LN) s true «f
V doesn't occur free in the wifs associated with the stepnumbers in the list LN.

ISFREEFORT(X,V,TRM) 1s true 1f X (a term or a variable) may be substituted for V in the term TRM
without conflicts of bound variables. {SFREEFORW(X,V,WF) is the analogue for wffs.

3.5.2 Functious used in INCL, CUT, CASES, SHOW

The functions described in this section are listed in appendix 6.2.

PICKUP 1s used in the command INCL for selecting the n-th awff in a wff.

INCLTEST(LN,WF) uses TESTM. It 1s used in CUT to check if every wff associated with the
stepnumbers 1n the list LN appears in WF.

TESTCASES and TESTC are used in testing the applicability of the cases rule. FIND and
REMOVE are used in building up the dependency part of the step generated by the CASES
command.

OFT 15 used in the SHOW command to parse an optional part in the input string.

3.5.3 Conversion and substitution routines
The conversion and suostitution routines are histed in appendix 6.3.

CONVT(TRM) performs all the possible lambda-conversions on TRM. If it is an identifier, no
conversion can be done. If 1t 1s composed of various parts, then the conversion is recursively done
on them. If it is an application term, then tests are performed to see if 2 conversion can be done and
if the resulting term can be further converted.

SUBSTG(TRM,X,V1) 1s the "general” substitution routine. X, a variable or a term, replaces V1 in all its
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free occurrences in TRM. A test 1s done on TRM and X s recursively substituted i all the components
of TkM. Wten faced with a lambda-term o' a mu-term a test is done to detect conflicts of variables.

ACONV(TRM,V1,V2) pertorms an alpha-conversion on TRM. VI replaces V2 in its first bound
nonconflicing occurrence.

SUBW(AWF1,AWF2,N) 1s an 2ux liary function used in the command SUBST, when 1t is applied to
. vo stepnumbers. AWF 1 is the awff in which the substitution takes place. The term at the left hand
side of AWF2, denoted as TRMI, replaces the term at the right hand side of AWF2, denoted as TRM2,
in its N-th occurrence. The global variable SUBCOUNT s set to N, it will mark the occurrence
where the substitution mus. be done. The substitution 1s first attempted on the term at the left hanAd
side of AWF1. If not performed there, then it ts attempted i the term at the right hand side of
AWF1.

SUBSTTT(TRMI,TRM2,TRM3,N) 15 used by the command SUBST when its last argument is a term.
TRM2 replaces TRM3 in 1ts N-tl. occurrence in TRMI.

DOSUBST(TRMI,TRM2,TRM3) :< the auxiliary function that performs the substitution of TRM2 for
TRMI1 in TRMI. A test is done on Trail and the substitution is recursively attempted on its various
parts. SUBCOUNT s decremented whenever an occurr nce is found and, when its value is O the
substitution takes place. Occurrences where conflicts arise among variables are not counted.

Section 3.6 The Data Structure
All the functions directly manipulaiing the data structure are listed in appendix 7.

In appendix 7.1 all the constructors are listed. By constructor we mean a function that assembles
structured data.

MK CONDTERM, MKAPPLTERM, MKLAMBDATERM and MKMUTERM define the internal
representation of terms. They are represented as LISP S-expressions whose first element denotes the
nature of the term and s followed by the components of the term. Awffs are assembled by
MKAWFF. They are S-expressions whose first element is the relation symbol = or ¢ MKWFF
assembles wffs of just one awff. In general wffs may be lists of more than one awff. For instance
those produced by the function UNIONW (see appendix 7.4) used in the command CON J.

The proof 1s represented as a hst, imually 1t 1s set to NIL. Each step 1s added to this list by the
function ADDLINE (see appendix 7.4) and is assembled by the constructor MKPROOFSTEP.
Proof steps have the form of a list of three elements: a wff, a list of dependencies and a reason
assembled by the constructor REASON. The function ADDLINE puts the stepnumber in front of
each proof step.

Appendix 7.2 contains the list of all the selectors used in retrieving the various components of the
terms, awffs and the proof.

Appendix 7.3 contains a list of predicates used in the program. These predicates are tests on the
nature of terms, awffs etc.
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Some miscellaneous functions are listed in appendix 7.4 UNIONOF is the set theoretic union for
lists of numnbers, UNIONW is the set theoretic union for wffs, manely for lists of awffs. ADDLINE
(see above) increments the variable PFLENGTH (proof length) by | and adds a new step to the
proof. SEARCH is used to search steps in the proof, LNT gives the length of a list, and finally
SUBW V(WF,X,V) substitutes X for each occurrence of V in WF. It is used in the command INDUCT.
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APPENDIX 1

THE PARSER

1.1 Special variables

PC,
ENDSTACK,
PROOF,
PFLENGTH,
SUBCOUNT;

1.2 Scanner for LCFsmall

EXPR readlist(X);
READLIST(ALCII(OCTAL 57) CONS X);

EXPR scan( :X);
IF EQ(X+TYPE(CHAR),0) THEN idscan()
ELSE IF EQ(X,1) THEN numscan()
ELSE IF EQ(X,2) THEN delscan()
ELSE CHAR«TYI() ALSO scan();

EXPR idscan();
BEGIN NEW TOKEN,X;
TOKEN«<ASCII(CHAR)>;
A; IF EQ(X~TYPE(CHAR*TYI()),0)VEQ(X,1)
THEN TOKEN+ASCII(CHAR) CONS TOKEN ALSO GO A;
RETURN(readlist(REVERSE(TOKEN)) CONS 'IDENT); END;

EXPR numscan();
BEGIN 'EW TOKEN;
TOKEN«<ASCIH(CHAR)>;
IF EQ(TYPE(CHAR<TYI()),1)
THEN TOKEN+ASCII(CHAR) CONS TOKEN ALSO GO A;
RETURN(readlist(REVERSE(TOKEN)) CONS 'NUMBER); END;

EXPR delscan();
BEGIN NEW TOKEN;
TOKEN«=<ASCII(CHAR)>;
CHAR«TYI();
RETURN(readlist(TOKEN) CONS "Dti);END;

EXPR setup();
BEGIN NEW X;
ARRAY (TYPE,36,CONS(0,127));
ARRAY(TSTACK,T,CONS(0,500));
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FOR X«0 TO 127 DO TYPE(X)+2;

FOR X~OCTAL 011 TO OCTAL 015 DO TYPE(X)*3; *
FOR X+~OCTAL 060 TO OCTAL 07} DO TYPE(X)+1; .jl
FOR X+~OCTAL 101 TO OCTAL 132 DO TYPE(X)+0;

FOR X~OCTAL 141 T) OCTAL 172 DO TYPE(X)+0;

TYPE(OCTAL 040)«3; TYPE(OCTAL 175)+3; TYPE(OCTAL 177)3; END;

1.3 Parsing primitives

EXPR token(); PC+PCsl; 1

EXPR tokenv(); CAR tstack(PC~PCs1);
EXPR tokent(); CDR tstack(PC+PC+1);

EXPR tstack(N);
IF ENDSTACK LESSP N
THEN FOR NEW I~(ENDSTACK+1) TO N DO TSTACK(I)+scan()
ALSO ENDSTACK«N
ALSO TSTACK(N)
ELSE TSTACK(N);

EXPR peekv(N); CAR tstack(PC+N);
EXPR peeki(N); COR tstack(PC+N);

EXPR flush(); BEGIN PC+~0; ENDSTACK+0;END;

EXPR nextv(X); EQ(X,CAR tstack(PC+1));
EXPR nextt(X); EQ(X,COR tstack(PC+1));

1.4 Parser

EXPR TERM();
BEGIN NEW START,REPX,Y;START«PC;
IF X+SIMPLTERM() THEN REP+X ELSE RETURN NIL;

A;  STARTePC;
IF LPAR(A(Y=TERM())ARPAR()
THEN REP«('!APPLY CONS REP CONS Y) ALSO GO A;
PC-START;
RETURN(REP)END;

EXPR CONDTERM(); .
BEGIN NEW STARTX,Y,Z; START«PC;




LCFsmall 21

IF LPAR{)A(X~TERM())ARARROW()A(Y«+TERM())ACOMMA()A(Z+TERM())ARPAR()
THEN RETURN( '?!'COND CONS X CONS Y CONS Z);
PC+START;END;

EXPR LAMBDATERM{);
BEGIN NEW STARTX,Y; START+PC;
IF LSQBRACKET()Alambda{)A(X+IDENT())APERIOD()A(Y+~TERM())ARSQBRACKET()
THEN RETURN( '7!LAMBDA CONS X CONS Y);
PC+~START;END;

EXPR MUTERM();
BEGIN HEW START,X,Y; START~PC:
IF LS”IRACKE . {)AMUQA(XIDENT())APERIOD()A(Y+TERM())ARSQBRACKET()
THEN -~ TURN{ '2!'MU CONS X CONS Y);
PC+START;END;

EXPR SIMPLTERM();

BEGIN NEW START X;START+PC,

IF (X~IDENT{)) Vv
(X~CONDTERM()) v
{X~LAMBDATERM()} v
{X~MUTERM()) v
(LPAR{)A(XTERM))ARPAR())

THEN RETURN X;

PC+~START;END;

EXPR AWFF();
BEGIN NEve STARTX,R,Y; START+PC;
IF (X~ TERM())A(REREL())A(Y+TERM())
THEN RETURN( R CONS X CONS Y);
PC+START;END;

EXPR WFF();
BEGIN NEW START,REP,X;START«FC;
IF X~AWFF({) THEN REP~<X> ELSE RETURN NIL;
A;  START-PC;
IF COMMA()A(X-AWFF()) THEN REP~<X>@REP ALSO GO A;
PC+START;
RETURN(REP);END;

EXPR IDENT(); IF EQ(peekt(1),'IDENT) THEN tokenv() ELSE NIL;
EXPR NUMBER(); IF EQ(peeki(1),'NUMBER) THEN VALUE (tokenv()) ELSE NIL;
EXPR REL(); IF nextv('?z)vnextv('?7c) THEN tckenv() ELSE NIL;
EXPR CHECK(X);  IF nextv(X) THEN token() ELSE NIL;

EXPR SC{); IF nextv('?;) THEN token() ELSE NIL;

EXPR LPAR({); IF nextv('?() THEN token() ELSE NIL;

EXPR RPAR(); IF nextv('?)) THEN token() ELSE NIL;

EXPR RARROW(); IF nexiv{'?=) THEN token{) ELSE NIL;
EXPR COMMA(); IF nextv('?,) THEN token() ELSE NIL;
EX.PR COLON(); IF nextv('?:) THEN token() ELSE NIL;
EXPR DOLLAR();  IF nextv('?§) THEN token() ELSE NIL;
EXPR PERIOD();  IF nextv('?.) THEN token() ELSE NIL;

EXPR LSQBRACKET(); IF nextv('?[) THEN token() ELSE NIL;
EXPR RSQBRACKET(); IF nextv('?]) THEN token() ELSE NIL;
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EXPR fambda();  IF nextv('?X) THEN token() ELSE NIL;
EXPR MU(); IF nextv('?o¢) THEN loken() ELSE NiL;

EXPR VALUE(X);
(READLIST(CDR(EXPLODE X)));
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APPENDIX 2

TOP LEVEL ROUTINES

EXPR INIT();
BEGIN
LISPINIT();
SCNINIT();
LCFINIT();
END;

EXPR LISPINIT();
BEGIN
?xNOPOINT«T;
BASE «10;
IBASE «10,;
END;

EXPR SCNINIT();
BEGIN
CHAR « 40;
PCe1;
ENDSTACK+0;
setup();
END;

EXPR LCFINIT();
BEGIN
PROOF«NIL;
PFLENGTH « 0;
RESUME();
END;

EXPR RESUME();
BEGIN NEW X;

A; X+~ERRSET(LCFPROOF());
IF EQ(X,'7$ECF?8) THEN INC(NIL,T) ALSO flush() ALSO GO A;
END;

EXPR LCFPROOF();
BEGIN
A; PRINC(TERPRI("xxxx"));

IF DOLLAR() THEN PRINTMES("END OF PROOF")
ALSO flush()
ALSO RETURN(PRINC(™ ™));

IF LINE() v BADLINE() THEN flush() ALSO GO A;

END;

EXPR LINE();
BEGIN NEW NC;
IF (NC-FETCH()) v (NC-SHOW()) v (NC+CANCEL()) THEN RETURN(NC);
IF (NC-ASSUME()) v (NC+INCL()) v
(NC+REFL1()) v (NC+REFL2()) v
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(NC-MINI()) v (NC+MIN2()) v
(NC+ALPHACONV()) v(NCeSUBST()) v
(NC-ABSTR()) v (NC+FIXP()) v
(NC+~CONDT()) v (NC+CONDF()) v
(NC*CONDUO)V(NC*EQWVO)V
(NC-HALF()) v (NC+SYM()) v
(NC-TRANS()) v (NC-APPL()) v
(NC+CONJ()) v (NC+CUT()) v
(NC-CASES()) v (NC+INDUCT(}) v
(NC+ CONV()) v (NC-ETACONV())

THEN (IF ISLINE(NC) THEN ADDLINE(NC) ALSO PRINTNEWLINE());

RETURN (NC);

END;

EXPR BADLINE();
BEGIN
A; IF -nextv('?;) THEN token() ALSO GO A;
PRINTMES( "SYNTAX ERROR;TRY AGAIN"); -
RETURN (PRINC(" ™))
END;
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APPENDIX 3 f

PRINTING ROUTINES i

EXPR PRINTAWFF(AWF);
BEGIN NEW CR;
IF ATOM(AWF) THEN RETURN PRINC(AWF);
CR-CAR(AWF);
IF EQ(CR,”?:) v EQ(CR,"<)

THEN BEGIN PRINTAWFF (CADR AWF); ,
PRINC(CR); /
PRINTAWFF(CDDR AWF); END;

IF EQ(CR,7'APPLY)

THEN BEGIN PRINTAWFF(CADR AWF):
PRINC('?( );

PRINTAWFF (CDDR AWF);
PRINC('7));  END;

S IF EQ(CK,'?!COND)
THEN BEGIN PRINC("?( );

— PRINTAWFF (CADR AWF);
PRINC('?-);

PRINTAWFF (CADDR AWF);
PRINC('?,);
PRINTAWFF(CDDDR AWF);
PRINC('?));  END;

IF EQ(CR,”!LAMBDA)

THEN BEGIN PRINC(?[7A);
PRINTAWFF(CADR AWF);
PRINC("2.);

PRINTAWFF(CDDR AWF);
PRINC(?]);  END;

IF EQ(CR,"7!MU)

THEN BEGIN PRINC("?[?ec);

PRINTAWFF (CADR AWF);
PRINC('?.);

PRINTAWFF (CODR AWF);
PRINC(?));  END;

END;

EXPR PRINTMES(X);
TERPRI(PRINC(TERPRI(X)));

EXPR PRINTM(N);
BEGIN
PRINC(TERPRI("THE LAST LINE IN THE PROOF 1S5: ™));
RETURN(TERPRI(PRINC(N)));
END;

EXPR PRINTNEWLINE();
BEGIN NEW X;
X+PROOF[1];
PRINC(X[1]); IF (X{1]210) THEN PRINC(" ") ELSE PRINC(" ");
PRINTLST(X[2]); PRINC(" ")

RETURN PRINC(IF NULL(X{3]) THEN " " ELSE X[3}); END;
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EXPR PRINTLINE(X)s
BEGIN
PRINC(X[1]); IF (X[1]210) THEN PRINC(" ") ELSE PRINC(" ")
PRINTLST(X[2]); PRINC(" ")

PRINC(IF NULL(X[3]) THEN " * ELSE X[3]); PRINC(" "%
IF ATOM(X[4]) THEN RETURN PRINC(X[4]) ELSE RETURN PRINTLST(X[4]);
END;

EXPR PRINTLST(X);
IF NULL(CDR X) THEN PRINTAWFFIX[1]) ELSE
BEGIN PRINTAWFF(X[1]);
PRINC(" ");
RETURN PRINTLST(CDR X);END;

26
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APPENDIX ¢

INFERENCE COMMANDS

EXPR ASSUME();
BEGIN NEW AWF ,STAT; START+PC;
IF CHECK('ASSUME) A (AWF~AWFF()) A SC()
THEN RETURN ASSUMESEM(AWF); PC~START;
END;

EXPR ASSUMESEM(AWF);
MKPROOFSTEP(CAWF> <PFLENGTH + 1>,'ASSUME );

EXPR INCL();
BEGIN NEW LI ,N,START; START«PC;
IF CHECK('INCL) A (L1+NUMBER()) A (N»NUMBER()) A SC()
THEN RETURN INCLSEM(LI N); PC-START;
END;

EXPR INCLSEM(LI N :WF);
IF ISPROOFSTEP(L1) AISINCL(N,WF~WFFOF{L1))
THEN MKPROOFSTEP(PICKUP(WF,N),DEPOF{L1),REASON(INCL,<L1,N>))
ELSE PRINTMES("NASTY INCL");

EXPR CON.O)
BEGIN NEW L1,.2,START; START-PC;
IF CHECK('CONJ) A (L1=NUMBER()) A (L2+~NUMBER()) A SC()
THEN RETURN CONJSEM(LI,L2); PC~START;
END;

EXPR CONJSEM(LILL Y
IF ISPROCFSTEP(L1) A ISPROOFSTEP( L2)
THEN MKPROOFSTEP(UNIONW (WFFOF (L1 ),WFFOF(L2)),
UNIONOF (DEPOF (L1 ),DEPOF(L2)),
REASON(’CONJ,<LI,L2>))
ELSE PRINTMES("NASTY CONJ");

EXPR CUT();
BEGIN NEW L1,L2,START;START-PC;
IF CHECK('CUT) A (L1=NUMBER()) A (L2-NUMBER()) A SC()
THEN RETURN CUTSEM{L! L2); PC+START;
END;

EXPR CUTSEMI(LI L2);
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A INCLTEST(DEPOF(L2),WFFOF(L1))
THEN MKPROOFSTEP(WFFOF (L2),DEPOF (L1),REASON('CUT <L1,L2>))
ELSE PRINTMES("NASTY CUT");

EXPR HALF();
BEGIN NEW LI,START; START+PC;
IF CHECK('HALF) A (L1+NUMBER()) A SC()
THEN RETURN HALFSEM(L1); PC+~START;
END;
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EXPR HALFSEM(L] :AWF);
IF ISPROOFSTEP(L1) A ISEQUIVAWFF(AWF-AWFFOF(L1))
THEN MKPROOF STEP(MKWFF ('7c,FSTERMOF (AWF),SNTERMOF (AWF)),DEPOF(L1),
REASON('HALF <L1>))
ELSE PRINTMES("NASTY HALF");

EXPR SYM();
BEGIN NEW L1,START; START+PC;
IF CHECK('SYM) A (L1+~NUMBER()) A SC()
THEN PETURN SYMSEM(L]); PC+START;
END;

EXPR SYMSEM(L! :AWF);
IF ISPROOFSTEP(L!) A ISEQUIVAWFF(AWF<AWFFOF(LI))
THEN MKPROOFSTEP(MKWFF('?E,SNTERMOF(AWF),FSTERMOF(AWF)).DEPOF(Ll )
REASON('SYML1>))
ELSE PRINTMES("NASTY SYM");

EXPR TRANS();
BEGIN NEW L1,L2,START;START+~PC;
IF CHECK('TRANS) A (Li~NUMBER()) A (L2-NUMBER()) A SC()
THEN RETURN TRANSSEM(L1 L2); PC+START;
END;

EXPR TRANSSEM(LI L2 :AWFI AWF2 REL);

IF ISPROOFSTEP{LI) A ISPROOFSTEP(L2)

A EQUAL(SNTERMOF (AWF | = AWFFOF (L1)),F STERMOF (AWF < ~AWFFOF (L2)))

THEN (IF ISEQUIVAWFF(AWF 1) A ISEQUIVAWFF(AWF2)

THEN REL + ('7=) ELSE REL ~ ('7¢))

ALSO MKPROOFSTEP(MKWFF (REL FSTERMOF (AWF 1),SNTERMOF(AWF2)),
UNIONOF (DEPOF (L 1),DEPOF(L2)),
REASON('TRANS,<LI,L2>))

ELSE PRINTMES("NASTY TRANS");

EXPR APPL();
BEGIN NEW L1, TRM,START: START«PC;
IF CHECK('APPL) A (TRM=TERM()) A (.1 ~“NUMBER()) A SC()
THEN RETURN APPLSEMI(TRM,L1); PC-START;
IF CHECK('APPL) A (L1+NUMBER()) A (TRM~TERM()) A SC()
THEN RETURN APPLSEM2(L1,TRM); PC+START;
END;

EXPR APPLSEMI(TRM,L1:AWF);
IF ISPROOFSTEP(L]) THEN
MKPROOFS TEP (MKWFF (RELOF (AWF « AWFFOF (L 1)),MKAPPLTERM(TRM,F STERMOF (AWF)),
MKAPPLTERM(TRM,SNTERMOF (AWF))),
DEPOF(L1),REASON('APPLCTRM,LI>))
ELSE PRINTMES("NASTY APPL");

EXPR APPLSEM2(LI,TRM:AWF); '
IF ISPROOFSTEP(L1) THEN
MKPROOFS TEP (MKWFF (RELOF (AWF~AWFFOF (L 1)),MKAPPLTERM(FSTERMOF (AWF),TRM),
MKAPPLTERM(SNTERMOF (AWF),TRM)),
DEPOF(L1),REASON('APPL LI, TRM>))
ELSE PRINTMES("NASTY APPL");

28




LCFsmall

EXPR ABSTR();
BEGIN NEW L1,V1,START;START=PC;
IF CHECK('ABSTR) A (L1+~NUMBER()) A (VI«IDENT()) A SC()
THEN RETURN ABSTRSEM(L1,V1); PC+START;
END;

EXPR ABSTRSEMI(LI VI :AWF);
BEGIN
IF ISPROOFSTEP(L1) A NOTFREE(VI,DEPOF(L1)) THEN
AWF~AWFFOF(I 1) ALSO RETURN(MKPROOFSTEP(MKWFF(RELCF(AWF),
MKLAMBDATERM(V1,FSTERMOF (AWF)),
MKLAMBDATERM(V! ,SNTERMOF (AWF))),
DEPOF(L1),REASON('ABSTR<L1,V1>)))
ELSE RETURN(PRINTMES("NASTY ABSTR")); END;

EXPR CASES();
BEGIN NEW L1,L2,L3,TRM,START; START+PC;
IF CHECK({'"CASES) A (L1+=NUMBER()) A (L2~-NUMBER()) A
(L3+NUMBER()) A (TRM=TERM()) A SC()
’/ THEN RETURN CASESSEM(LI,L2,L3,TRM); PC~START;
END;

EXPR CASESSEM(LI L2,.3, TRM:WF I, WF2,D1,02,03);
IF 1SPROOFSTEP{L1) A ISPROOFSTEP(L2) A ISPROOFSTEP(L3) A
EQUAL (WF | ~WFFOF (L1),WF2-WFFOF(L2)) A
EQUAL (WF2,WFFOF(L3)) A
TESTCASES(D1+DEPOF(L1),02+DEPOF (L2),D3+DEPOF(L3),TRM)
THEN MKPROOF STEP(WF I,UNIONOF (REMOVE(D1,FIND(DI,TRM,'TT)),
UNIONOF (REMOVE(D2,FIND(D2,TRM,'UU)),
REMOVE(D3,FIND(D3,TRM,'FF)))),
REASON('CASES,<L1,L2,L3,TRM>))
ELSE PRINTMES("NASTY CASES");

EXPR INDUCT();
BEGIN NEW L1,L2,L3,L4,VI START; START+PC;
IF CHECK('INDUCT) A (L1+NUMBER()) A (L2-NUMBER()) A (L3-NUMBER()) A
(L4~NUMBER()) A (V1«IDENT()) A SC()
THEN RETURN INDUCTSEM(L1,L2,L3,L4,V1); PC-START;
END;

EXPR INDUCTSEM(LI,L2,L3,L4,VI]);
BEGIN NEW AWF | WF3FIX,MT,BVMAT,FUNYI;
IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A ISPROOFSTEP(L3) AISPROOFSTEP(L4) A
ISMUTERM(MT+SNTERMOF (AWF 1 -AWFFOF(L1))) A
ISFREEFORT (FIX+FSTERMOF (MT),BV+BVAROF (MT),MAT+MATRIXOF (MT)) A
ISFREEFORW('UU, V1 WF3«WFFOF(L3)) A
ISFREEFORT(V!,BV,MAT) A
ISFRCEFORW(FUNV 1 ~SUBSTG(MAT,VI,BV),V1 WF3) A
ISFREEFORW(FIX, VI ,WF3) A
EQUAL(WFFOF(L2),SUBWV(WF3,'UUVI)) A
EQUAL(WFFOF(L4),SUBWV(WF3,FUNV] VI)) A
MEMQ(L3,DEPOF (L4))
THEN RETURN MKPROOFSTEF(SUBWYV(WF3,FSTERMOF(AWF1),V1),
UNIONOF (UNIONOF (DEPOF (L 1),0EPOF(L2)),
REMOVE (UNIONOF (DEPOF (L3),DEPOF (L4)),L3)),
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REASONCINDUCT, <L1,L2,L3,L4,V1>)) !
ELSE PRINTMES ("NASTY INDUCT");
END; 1

EXPR CONV(); \
BEGIN NEW L1, TRM,START;START+PC; .
IF _HECK('CONV) A (L1=NUMBER()) A SC() ;
THEN RETURN CONVSEMI (L1); PC+~START;
IF CHECK('CONV) A (TRM=TERM()) A SC()
THEN RETURN CONVSEM2(TRM); PC+START;
END;

EXPR CONVSEMI (L1:AWF);
IF ISPROOFSTEP(LL)
THEN MKPROOF STEP(MKWFF(RELOF (AWF+AWFFOF(L1)),
CONVT(FSTERMOF (AWF)),CONVT(SNTERMOF (AWF))), ‘
DEPOF(L1),REASON('CONV<L]>))
ELSE PRINTMES("NASTY CONV");

h) EXPR CONVSEM2(TRM);
- MKPROOFSTEP(MKWFF ('7=, TRM,CONVT(TRM)),'NOCCP,REASON('CONV,CTRM>));

EXPR ETACONV();
BEGIN NEW TRM,STARY;START«PC;
IF CHECK('ETACONY) A (TRM-TERM()) A SC{)
THEN RETURN ETACONVSEM(TRM); PC+~START;
END;

EXPR ETACONVSEM(TRM);

IF ISLAMBDATERM(TRM) A ISAPPLTERM(MATRIXOF(TRM)) A
EQ(BVARQF (TRM),ARGOF (MATRIXOF{TRM))) A
NOTFRVT(BVAROF(TRM),FNOF(MATRIXOF (TRM)))

THEN MKPROOQF STEP(MKWFF ('7=, TRM,FNOF(MATRIXOF (TRM))),

"NODEP,REASON('ETACONY,<TRM>))
ELSE PRINTMES("NASTY ETACONV");

EXPR ALPHACONV();
) BEGIN NEW L1,TRM,VI ,V2,START;START+PC;
P IF CHECK('ALPHACONV) A (L1+=NUMBER()) A (V1+IDENT()) A (V2=IDENT()) A SC()
' THEN RETURN(ACONVSEMI(L1,V1,V2)); PC+START;
IF CHECK('ALPHACONV) A (TRM=TERM()) A (V1+IDENT()) A (V2+IDENT()) A SCy)
THEN RETURN(ACONVSEM2(TRM,V1,V2)); PC-START;
END;

EXPR ACONVSEMI(L],VI,V2 :AWFFS);
IF ISPROOFSTEP(L1)
THEN MKPROOFSTEP(MKWFF(RELOF (AWF+AWFFOF(L1)),FS~ACONV(FSTERMOF (AWF),V1,V2),
IF EQUAL(FS,FSTERMOF(AWF)) THREN ACONV(SNTERMOF(AWF),V1,V2)
ELSE SNTERMOF (AWF)),
DEPOF(L1), REASON('ALPHACONYV, <L 1,V1,v2> })
ELSE PRINTMES("NASTY ALPHACONV");

EXPR ACONVSEM2(TRM,V1,V2);
MKPROOF STEP(MKWFF ('7=, TRM,ACONV(TRM,V1,v2)),'NODEP,REASON('ALPHACONV,CTRM,V1,V2>));

T T i e, '
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EXPR EQUIV();
BEGIN NEW LI ,L2,START; START+PC;
IF CHECK('EQUIV) A (L1+NUMBER()) A (L2+NUMBER()) A SC()
THEN RETURN EQUIVSEM(L1,L2); PC+START;
END;

EXPR EQUIVSEM(L] L2:AWF I AWF2);
IF  iSPROOFSTEP(LI) A ISPROOFSTEP(L2)
A ISLTAWFF (AWF | ~AWFFOF (L1)) AISLTAWFF(AWF2+AWFFOF(L2))
A EQUAL(FSTERMOF (AWF 1), SNTERMOF(AWF2))
A EQUAL(FSTERMOF(AWF2), SNTERMOF(AWF1))
THEN MKPROOFSTEP(MKWFF ('72,FSTERMOF (AWF 1 5,SNTERMOF (AWF 1)),
UNIONOF (DEPOF (L 1),DEPOF (L2)),REASON('EQUIV <L 1,L2>))
ELSE PRINTMES("NASTY EQUIV™);

EXPR REFLI();
BEGIN NEW TRM,START; START+PC;
IF CHECK('REFL1) A (TRMe=TERM()) A SC()
THEN RETURN REFL1SEM(TRM); PC+START;
END;

EXPR REFLISEM(TRM);
MKPROQF STEP(MKWFF ('?=,TRM,TRM), 'NODEP , REASON('REFL | <TRM>));

EXPR REFL2();
BEGIN NEW TRM,START; START+PC;
IF CHECK('REFL2) A (TRM=TERM()) A SC()
THEN RETURN RZFL2SEM(TRM); PC+START;
END;

EXPR REFL2SEM(TRM);
MKPROOF STEP(MKWFF ('7¢,TRM,TRM), 'NODEP , REASON('REFL2,<TRM>));

EXPR MINI();
BEGIN NEW TRM,START; START+PC;
IF CHECK('MIN1) A (TRM+~TERM()) A SC()
THEN RETURN MIN1SEM(TRM); PC-START;
END;

EXPR MIN] SEM(TRM);
MKPROOFSTEP(MKWFF ("?<,'UU,TRM),'NODEP , REASON('MIN1 <TRM>));

EXPR MIN2();
BEGIN NEW TRM,START; START+PC;
IF CHECK('MIN2) A (TRM+TERM()) A SC()
THEN RETURN MIN2SEM(TRM); PC&START;
END;

EXPR MIN2SEM(TRM);
MKPROOF STEP(MKWFF ("7, MKAPPLTERM('UU,TRM),'UU),'NODEP , REASON('MIN2,<TRM>));

EXPR CONDT();
BEGIN NEW TRM,START; START«PC;
IF CHECK{'CONDT) A (TRM+CONDTERM()) A SC()
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THEN RETURN CONDTSEM(TRM); PC+START;
END;

EXPR CONDTSEM(TRM);
IF 1ISTTCOND(TRM)
THEN MKPROOF STEP(MKWFF('?:,TRM,TRUCASOF (TRM)),'NODEP , REASON({"CONDT,(TRM>))
ELSE PRINTMES("NASTY CONDT");

EXPR CONDF();
BEGIN NEW TRM,START; START«FPC;
IF CHECK('CONDF) A (TRM=CONDTERM()) A SC()
THEN RETURN CONDF SEM(TRM);PC+START;
END;

EXPR CONDFSEM(TRM);
IF ISFFCOND{TRM)
THEN MKPROOF STEP(MKWFF('?=, TRM,FALCASOF (TRM)),'NODEP , REASON('CONDF ,<TRM>))
ELSE PRINTMES("NASTY CONDF");

EXPR CONDU();
BEGIN NEW TRM,START; START+PC;
IF CHECK('CONDU) A (TRM+~CONDTERM()) A SC()
THEN RETURN CONDUSEM(TRM); PC+START;
END;

EXPR CONDUSEM(TRM);
IF ISUUCOND(TRM)
THEN MKPROOFSTEP(MKWFF('?z,TRM,'UU),'NODEP , REASON('CONDU,CTRM>))
ELSE PRINTMES("NASTY CONDU");

EXPR FIXP();
BEGIN NEW L1, START;START+PC;
IF CHECK('FIXP) A (L1+~NUMBER()) A SC()
THEN RETURN FIXPSEM(L1); PC~START;
END;

EXPR FIXPSEM(L] :AWF MTFIX,BV,MA);
iF ISPROOFSTEP(L]) A ISMUTERM(MT+(SNTERMOF(AWF«AWFFOF(L1)))) A
ISFREEFORT (FiX+FSTERMQF (AWF),BV+BVAROF (MT),MA«MATRIXOF (MT))
THEN RETURN(MKPROOF STEP(MKWFF('?=FIX,SUBSTG(MA FIX,BY)),
DEPOF (L1 ),REASON('FIXP<L1>)))
ELSE RETURN(PRINTMES("NASTY FIXP"));

EXPR SUBST();
BEGIN NEW L1 ,N,L2,TRM,START;START+PC;
IF CHECK('SUBST) A (L1+~NUMBER()) A CHECK('OCC) A (N~NUMBER())
A CHECK{'IN) A (L2~-NUMBER()) A SC()
THEN RETURN SUBSTSEMI(LI,N,L2); PC+START;
IF CHECK('SUBST) A (L1+~NUMBER(}) A CHECK('0CC) A (N~NUMBER())
A CHECK('IN) A (TRM+-TERM()) A SC()
THEN RETURN SUBSTSEM2(LI,N,TRM); PC-START;
END;

EXPR SUESTSEMI(LL,N,L2);
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BEGIN NEW AWF | AWF2,DEP;

IF ISPROOFSTEP(L1) A ISPROOFSTEP(L2) A ISEQUIVAWFF(AWF1+AWFFOF(L1))

THEN AWF2¢ AWFFOF(L2) ALSO
DEP+UNIONOF (DEPOF (L1),DEPOF(LZ)) ALSO
RETURN MKPROOFSTEP(SUBW(AWF2,AWF | N),DEP,

REASON('SUBST,<L1,OCCN,INL2>))
ELSE RETURN PRINTMES("NASTY SUBST");
END;

EXPR SUBSTSEM2(LI,N,TRM);
BEGIN NEW AWF,REL,SNT;
IF ISPROOFSTEP(LI)
THEN AWF~AWFFOF(L1) ALSO REL~RELOF(AWF) ALSO
SNTeSUBSTTT(TRM,SNTERMOF (AWF),FSTERMOF (AWF),N) ALSO
RETURN MKPROOF STEP(MKWFF (REL,TRM,SNT),DEPOF(L1),
' REASON('SUBST <L1,'0CC,N,'IN,TRM>))
ELSE RETURN(PRINTMES("NASTY SUBST"));
END;
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APPENDIX 5

AUXILIARY COMMANDS

EXFR SHOW();

BEGIN NEW NI,N2,START;
START+PC;
IF CHECK{'SHOW) A CHECK('LINE) A (N1+NUMBER{)) A
OPT(COLON() A (N2+-NUMBER())) A SC()
THEN RETURN SHOWSEM(NI,N2);
PC~START;
END;

EXPR SHOWSEM(NI,N2);
BEGIN
IF NULL(N2) THEN N2=N1;
TERPRI(PRINC(TERPRI{" ")));
A; IF(NISN2) THEN
(IF ISPROOFSTEP(NI)
THEN TERPRI(PRINTLINE(SEARCH(NI,PROOF))) ALSO N1«N1+¢l ALSO GO A

ELSE RETURN PRINTMES("NONEXISTING STEP"))
ELSE RETURN PRINC(" ");
END;

EXPR FETCH();
BEGIN NEW ID, START;
START«PC;
IF CHECK({'FETCH) A (ID*IDENT()) A SC() THEN RETURN FETCHSEM(ID);
PC+START;
END;

EXPR FETCHSEM(ID);
INC(EVAL(CINPUT,'FO0,'DSK?:>@<ID>),NiL);

EXPR CANCEL();
BEGIN NEW N,START; START~PC;
IF CHECK('CANCEL) A OPT{N~NUMBER()) A SC()
THEN RETURN CANCELSEM(N);
PC+~START; END;

EXPR CANCELSEM(N);
BEGIN
IF NULL(N) THEN NePFLENGTH;
IF (N<1)
THEN (PFLENGTH«0)

ALSO (PROOF&NIL)
ALSO RETURN (PRINTMES("YOU HAVE DEMOLISHED YOUR PROOF"));

A; IF (PFLENGTH LESSP N) THEN RETURN(PRINTM(PFLENGTH));
PFLENGTH «{PFLENGTH-1};
PROOF+~CDR PROOF;

GO A;
END;
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APPENDIX 6

AUXILIARY FUNCTIONS

6.1 Predicates on Free and Bound Occurrences of Varibles on Terms, Awffs, etc.

EXPR NOTBNDVT(V,TRM);

BEGIN

IF ISIDENT(TRM) THEN RETURN T;

IF 1SAPPLTERM(TRM) THEN RETURN (NOTBNDVT(V,FNOF (TRM;)A
NOTBNDVT(V,ARGOF (TRM)));

IF 1SCONDTERM(TRM) THEN RETURN (NOTBNDVT(V,PREDOF(TRM))A
NOTBNDVT(V,TRUCASOF (TRM))A
NOTBNDVT(V,FALCASOF (TRM)));

IF ISLAMBDATERM(TRM) v ISMUTERM(TRM))

THEN (IF EQ(BVAROF(TRM),V) THEN RETURN NIL
> ELSE RETURN NOTBNDVT(V,MATRIXOF(TRM)));

"‘/ END;
EXPR BOUNDV(V,TRM); ~NOTBNDVT(V,TRM);

EXPR NOTFRVT(V,TRM);

BEGIN
IF ISAPPLTERM(TRM) THEN RETURN (NOTFRVT (V,FNOF (TRM))ANOTFRVT (V,ARGOF (1 2*4)));

IF ISCONDTERM(TRM) THEN RETURN (NOTFRVT(V,PREDOF(TRM)) A
NOTFRVT(V,TRUCASOF(TRM)) A
NOTFRVT(V,FALCASOF(TRM)));

IF 1SLAMBDATERM(TRM) v ISMUTERM(TRM)
THEN RETURN (EQ(V,BVAROF(TRM)) v NOTFRVT(V,MATRIXOF (TRM)));

RETURN( ~EQ(V,TRM));

END;

EXPR FREEV(V,TRM); (-NOTFRVT(V,TRM));

EXPR NOTFRVW(V,WF);
IF EMPTY(WF) THEN T
ELSE NOTFRVT(V,FSTERMOF (FSTOF(WF))) A
NOTFRVT(V,SNTERMCF (FSTOF (WF))) A
NOTFRVW (V,RMDR(WF));

EXPR NOTFREE(V,LN);
IF EMPTY(LN) THEN T ELSE
(IF NOTFRVW(V,WFFOF (FSTOF(LN))) THEN NOTFREE(V,RMDR(LN)));

EXPR ISFREEFORT(X,V,TRM);

BEGIN

IF ISIDENT(TRM) THEN RETURN T;

IF ISAPPLTERM(TRM) THEN RETURN ISFREEFORT(X,V,FNOF(TRM))A
ISFREEFORT(X,V,ARGOF (TRM));

IF ISCONDTERM(TRM) THEN RETURN ISFREEFORT (X,V,PREDOF(TRM))A
ISFREEFORT(X,V,TRUCASOF (TRM)) A
ISFREEFORT(X,V,FALCASOF(TRM)) ;
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IF ISLAMBDATERM(TRM) v ISMUTERM(TRM) THEN
IF EQ(V,BVAROF(TRM)) v FREEV(BVAROF(TRM),X) THEN RETURN NIL
ELSE RETURN ISFREEFORT(X,V,MATRIXOF (TRM));

END;

EXPR ISFREEFORW(X,V,WF);
IF EMPTY (WF) THEN T
ELSE ISFREEFORT(X,V,FSTERMOF (FSTOF (WF))) A
ISFREEFORT(X,V, 3 TERMOF (FSTOF (WF))) #
ISFREEF ORW(X,V,RMDR(WF));

6.2 Miscellaneous Functions Used in INCL, CUT. CASES, SHOW

EXPR PICKUP(WF N);
IF EQ(N,1) THEN <FSTOF (WF)> ELSE PICKUP(RMDR(WF),N-1);

EXPR INCLTEST(LN,WF);
BEGIN
IF EMPTY(LN) THEN RETURN(T);
IF TESTM(WFFOF (FSTOF (LN)),WF) THEN RETURN(INCLTEST (RMDR(LN),WF));

END;

EXPR TESTM(WF 1 ,WF2);
IF EMPTY(WF1) THEN T
ELSE MEMBER(FSTOF (WF1)WF2) A TESTM(RMDR(WF 1 ),WF2);

EXPR TESTCASES(LNI,LN2,LN3,TRM);
TESTC(MKWFF ("2, TRM,'TT),LN1) A
TESTC(MKAWF ('72,TRM,'UU),LN2) A
TESTC(MKAWF ('?2, TRM,'FF),LN3);

EXPR TESTC(WF LN);
IF EMPTY(LN) THEN NIL ELSE
IF EQUAL(WF,WFFOF (FSTOF(LN))) THEN T
ELSE TESTC(WF,RMDR(LN));

EXPR FIND(LN,TRM1 ,TRM2);
IF EMPTY(LN) THEN NIL ELSE
IF EQUAL(MKWFF('?E,TRMI,TRMZ),WFFOF(FSTOF(LN)))
THEN FSTOF (LN) ELSE FIND(RMDR(LN),TRMI,TRM2);

EXPR REMOVE(LN,N);
IF EQ(LN,NIL) THEN NIL ELSE
(IF EQ(N,FSTOF(LN)) THEN RMDR(LN)
ELSE (FSTOF(LN) CONS REMOVE(RMDR(LN),N)));

EXPR OPT(X);
IF X THEN X ELSE T;

6.3 Conversion and Substitution Routines
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EXPR CONVT(TRM);
BEGIN NEW BV ,MAS MA FNEW;
IF ISIDENT(TRM) THEN RETURN TRM;
IF ISCONOTERM(TRM) THEN RETURN MKCONDTERM(CONVT(PREDOF (TRM)),
CONVT(TRUCASOF (TRM)),CONVT(F ALCASOF (TRM)));

IF ISLAMBDATERM(TRM) THEN RETURN MKLAMBDATERM(BVARQF (TRM),CONVT(MATRIXOF (TRM)));
IF ISMUTERM(TRM) THEN RETURN MKMUTERM(BVAROF (TRM),CONVT (MATRIXOF (TRM)));

IF ISAPPLTERM(TRM) THEN
(IF ISLAMBDATERN!{FNOF (TRM))
THEN BV+BVAROF (FNOF (TRM))
ALSO MA+-MATRIXOF (FNOF (TRM))
ALSO MAS+SUBSTG(MA,CONVT(ARGOF (TRM)),BV)
ALSO RETURN IF EQUAL{MA MAS) THEN TRM ELSE
CONVT(MAS)
ELSE RETURN IF ISLAMBDATERM(FNEW«~CONVT(FNOF(TRM))) THEN
CONVT(MKAPPLTERM(FNEW,CONVT(ARGOF (TRM))))
ELSE MKAPPLTERM(FNEW,CONVT(ARGOF (TRM))));

END;

EXPR SUBSTG(TRMX,V1);

BEGIN
IF ISIDENT(TRM) A EQ(TRM,V1) THEN RETURN X;

IF ISIDENT(TRM) THEN RETURN TRM;
IF 1SAPPLTERM(TRM) THEN RETURN MKAPPLTERM(SUBSTG(FNOF (TRM),X,V1),
SUBSTG(ARGOF(TRM),X,V1));
IF ISCONCTERM(TRM) THEN RETURN MKCONDTERM(SUBS TG(PREDOF(TRM),X,V1 )
SUBSTG(TRUCASOF(TRM),X,V1),
SUBSTG(FALCASOF(TRM),X,V1));
IF ISLAMBDATIRM(TRM)
THEN RETURN (IF EQ(V1,BVAROF(TRM)) v FREEV(BVAROF (TRM),X)
THEN TRM
ELSE MKLAMBDATERM(BVAROF (TRM),SUBSTG(MATRIXOF (TRM),X,V1)));
IF ISMUTERM(TRM)
THEN RETURN (IF EQ(V1,BVAROF (TRM)) v FREEV(BVAROF (TRM),X)
THEN TRM
ELSE MKMUTERM(BVAROF (TRM),SUBSTG(MATRIXOF (TRM),X,V1)));

END;

EXPR ACONV(TRM,VI,V2:X);

BEGIN
IF NOTBNDVT(V2,TRM) THEN RETURN TRM;

IF ISCONDTERM(TRM) THEN BEGIN

IF BOUNDV(V2,PREDOF (TRM)) THEN RETURN MKCONDTERM(ACONY (PREDOF (TRM),V1,V2),

TRUCASOF (TRM),F ALCASOF (TRM));
IF BOUNDV(V2,TRUCASOF (TRM)) THEN RETURN MKCONDTERM(PREDOF (TRM),
ACONV(TRUCASOF (TRM),V1,V2),FALCASOF (TRM));
IF BOUNDV(V2,FALCASOF (TRM)) THEN RETURN MKCONDTERM(PREDOF (TRM),
TRUCASOF (TRM),ACONV(FALCASOF(TRM),V1,V2));END;
IF ISAPPLTERM(TRM) A BOUNDV(V2,FNOF (TRM))
THEN RETURN MKAPPLTERM(ACONV(FNOF (TRM),V1,V2),ARGOF (TRM));
IF ISAPPLTERM(TRM)
THEN RETURN MKAPPLTERM(FNOF (TRM),ACONV(ARGOF (TRM),V1,V2));
IF ISLAMBDATERM(TRM) A EQ(V2,BVAROF (TRM))
THEN RETURN (IF FREEV(V1,MATRIXOF (TRM)) v
EQUAL (X+SUBSTG(MATRIXOF (TRM),V1,V2),MATRIXOF (TRM))
THEN TRM
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ELSE MKLAMBDATERM({V1 X));
IF ISLAMBDATERM(TRM)
THEN RETURN MKLAMBDATERM(BVARQF (TRM),ACONV(MATRIXOF (TRM),V1,V2));
IF ISMUTERM(TRM) A EQ(V2,BVAROF (TRM))
THEN RETURN (IF FREEV(V] ,MATRIXOF(TRM)) v
EQUAL (X~SUBSTG(MATRIXOF(TRM),V1,V2) MATRIXOF (TRM))
THEN TRM
ELSE MKMUTERM(VI X));
IF ISMUTERM(TRM)
THEN RETURN MKMUTERM(BVAROF (TRM),ACONV(MATRIXOF(TRM),V1,V2));
END;

EXPR SUBW(AWF 1 ,AWF2,N);
BEGIN NEW TRMI,TRMZ;
SUBCOUNT«N;
TRM1+-DOSUBST(FSTERMOF (AWF1),SNTERMOF (AWF 2),F STERMOF (AWF 2));
TRM2«(IF EQ(SUBCQUNT,C) THEN SNTERMOF(AWF )
ELSE DOSUBST(SNTERMOF (AWF | ), SNTERMOF (AWF 2),F STERMOF (AWF2)));
RETURN MKWFF (RELOF (AWF!),TRMI,TRM2);
END;

EXPR SUBSTTT(TRMI , TRM2,TRM3,N);
BEGIN
SUBCOUNT«N;
RETURN DOSUBST(TRMI,TRM2,TRM3);
END;

EXPR DOSUBST(TRMI,TRM2,TRM3);
BEGIN NE'W AUX 1,AUX2,AUX3;
IF EQUAL(TRMI,TRM3) THEN (SUBCOUNT~SUBCOUNT-1) ALSO
(IF EQ(SUBCOUNT,0) THEN RETURN TRM2 ELSE RETURN TRM1);
IF ISIDENT(TRM1) THEN RETURN TRMI;
IF ISCONDTERM(TRM1) THEN
AUX | -DOSUBST (PREDOF (TRM1),TRM2,iRM3) ALSO
AUX2+ (IF EQ(SUBCOUNT,0) THEN TRUCASOF (TRM1)
ELSE DOSUBST(TRUCASOF(TRM1),TRM2,TRM3)) ALSO
AUX3«(IF EQ(SUBCOUNT,0) THEN FALCASOF (TRMI)
ELSE DOSUBST(FALCASOF(TRM1),TRM2,TRM3)) ALSO
RETURN MKCONDTERM(AUX I ,AUX2,AUX3);
IF ISAPPLTERM(TRM1) THEN
AUX 1+~DOSUBST (FNOF (TRM1),TRM2,TRM3) ALSO
AUX2+(IF EQ(SUBCOUNT,0) THEN ARGOF(TRM1)
ELSE DOSUBST(ARGOF(TRM1),TRM2,TRM3)) ALSO
RETURN MKAPPLTERM(AUX I,AUX2);
IF ISLAMBDATERM(TRM1) v ISMUTERM(TRM1) THEN
IF FREEV(BVAROF (TRM1),TRM2) v FREEV(BVAROF(TRM1),TRM3) THEN
RETURN TRMI ELSE RETURN
(IF ISLAMBDATERM(TRM1)

THEN MKLAMBDATERM(BVAROF (TRM1),DOSUBST(MATRIXOF (TRM1 ), TRM2,TRM3))
ELSE MKMUTERM(BVAROF(TRM] },DOSUBST(MATRIXOF (TRM1),TRM2,TRM3)));

END;
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APPENDIX 7

MANIPULATION OF THE DATA STRUCTURE

7.1 Constructors

EXPR MKCCNDTERM(PR,TC,FC); ('?7!COND CONS PR CONS TC CONS FC);
EXPR MKAPPLTERM(FN,ARG); {(""APPLY CONS FN CONS ARG);

EXPR MKLAMBDATERM(V,TRM); ("7'LAMBDA CONS V CONS TRM);

EXPR MKMUTERM(V,TRMY; ('?!'MU CONS V CONS TRM);

EXPR MKAWF (X,Y,2); (X CONS Y CONS 1)

EXPR MKWFF(X,Y,2); <(X CONS Y CONS n;

£XPR MKPROOF STEP(X,Y,2);IF EQ(Y,'NODEP) THEN <X,NIL,2> ELSE XY, 2>

EXPR REASON(X,Y);(X CONS Y);

7.2 Selectors

EXPR PREDOF (TRM); CADR TRM 4

EXPR TRUCASOF(TRM); CADOR TRM ;

EXPR FALCASOF (TRM); CODDR TRM 3

EXPR DEPOF (X:P); BEGIN PeSEARCH(X,PROOF );RETURN(P{3]);END;
EXPR RELOF(X); CAR X;

EXPR FSTERMOF(X); CADR X;

EXPR SNTERMOF(X); CODR X;

EXPR AWFFOF (X); (CAR WFFOF(X));

EXPR WFFOF(X:P); BEGIN Pe5EARCH(X,PROOF); RETURN( P[2]);END;
EXPR FSTOF(X); CARX
EXPR RMDR(X); CDR X 3

EXPR FNOF (X);CADR X;
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EXPR ARGOF(X); CDDR X;
EXPR BVAROF (X); CADR X;

EXPR MATRIXOF (X); CODR X;

7.3 Predicates

EXPR ISEQUIVAWFF(AWF);  EQ(RELOF(AWF),'?s);
EXPR ISLTAWFF(AWF); EQ(RELOF(AWF),"7¢);

EXPR ISINCL(N,WF); (LNT(WF)2N):

EXPR ISTTCOND(TRM); EQ(PREDC F (TRM),'TT);
EXPR ISFFCOND(TRM); EQ(PREDOF(TRM),'FF);
EXPR ISUUCOND(TRM); EQ(PREDOF (TRM),'UU);

EXPR ISPROOFSTEP(L);  (PFLENGTH2L);

EXPR EMPTY(X); EQOX,NILY;
EXPR ISLINE(X); ~(ATOM(X}};
EXPR ISIDENT({X); ATOM(X);

EXPR ISAPPLTERM(TRM); EQ((CAR TRM),'7!APPLY);
EXPR ISCONDTERM(TRM); EQ({CAR TRM), '?7!COND );
EXPR ISLAMBDATERM(TRM); EQ((CAR TRM) '?!LAMBDA);

EXPR ISMUTERM(TRM); EQ((CAR TRM), '?!MU);

7.4 Miscellaneous Functions

EXPR UNIONOF(LNI,LN2);
BEGIN
IF EQ(LN1,'NODEP) v EQ(LN!,NIL) THEN RETURN LN2;
IF EQ(LN2,"NODEP) v EQ(LN2,NIL) THEN RETURN LNI;

IF MEMQ((CAR LN1),LN2) THEN RETUR/I(UNIONOF ((CDR LN1),LN2))
ELSE RETURN((CAR LNI1) CONS (UNIONOF((COR LN1),LN2)));

END;

EXPF UNIONW{WF | ,WF2);
IF EQUAL(WF 1,NIL) THEN WF2 ELSE
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(IF MEMBER((CAR WF1),WF2) THEN UNIONW((COR WF1)WF2)
ELSE ((CAR WF1) CONS UNIONW((CDR WF1)WF2)));

EXPR ADDLINE(X); !
BEGIN  PFLENGTH « PFLENGTH ¢ 1; .
PROOF«((PFLENGTH CONS X) CONS PROOF);  END;

EXPR SEARCH(X, P);
IF EQ(P[1,1],X) THEN P[1] ELSE SEARCH(X,(CDR P));

EXPR LNT(X),
IF EQ({CDOP X),NIL) THEN | ELSE (LNT(COR X) ¢+ I ); P

EXPR SUBWV(WF X,V:FS);
IF EQ(WF,NIL) THEN NiL ELSE
(MKAWF (RE).OF (FS~FSTERMOF {WF)),SUBSTG(FSTERMOF (FS)X,V),
SUBSTG(SNTERMOF(FS),X,V)) CONS SUBWV(RMDR(WF),X,V));




ABSTR
ABSTRSEM
ACONV
ACONVSEMI1
ACONVSEM2
ADOL INE
APPL
APPLSEN]
APPLSEMZ
ARGOF
ASSUME
ASSUMESEM
AUFF
AWFFOF

BADLINE
EOUNDV
BVAROF

CANCEL
CANCELSEM
CASES
CASESSEM
CHECK
COLON
COMMA
CONDF
CONOF SEM
CONDT
CONDTERM
CONOTSEM
CONOU
CONDUSEM
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MKAWFF
MKCONOTERNM

MKLAMBDA TERM

MKMUTERM
MKPROOFSTEP
MINL

MINZ

MKWFF
MINISEM
MIN2SEM

aty

PUTERM

nextt
nextv
NOTBNDVT
NOTFREE
NOTFRVT
NOTFRVU
NUMBER
numscan

oPT

peekt
peekyv
PERIOO
PICKUP
PREDOF
PRINTAUFF
PRINTLINE
PRINTLST
PRINTM
PRINTHMES

PRINTNEWL INE

RARROW
readlist
REASON
REFL1
REFL2
REFL1SEM
REFL2SEN
REL
RELOF
RMOR
REMOVE
RESUME
RPAR
RSABRACKET

SC

scan
SCNINIT
SEARCH
setup
SHOW
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SHOWSEM
SIMPLETERM
SNTERMOF
SYM
SYMSEM
SUBST
SUBSTG
SUBSTSENMI
SUBSTSEMZ2
SUBSTTT
SuBW
SUBWY

TEST
TESTLASES
TESTM
TERM
token
tokent
tokenv
TRANS
TRANSSEM
TRUCASOF
tstack

UNTONOF
UNTONW

VALUE

WFF
WFFOF
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